Pengertian Logika, Proporsi,
dan Komponen Penghubungnya
Materi Kuliah Pengantar
Dasar Matematika
by Ardhi Prabowo
Universitas Negeri Semarang
- Logika dan Kalimat Berarti
Agar
komunikasi dapat dimengerti digunakan logika sebagai kontrol. Dalam matematika,
bahasa komunikasinya disebut kalimat matematika yaitu kalimat yang menggunakan
lambang-lambang matematika.
Kalimat
berarti terbagi atas: Kalimat Pernyataan dan Bukan Pernyataan (Kalimat Terbuka)
Contoh:
(silahkan
sebutkan yang contoh dan yang tak contoh)
Jadi
apakah yang disebut dengan pernyataan (proporsi)?
Kalimat Terbuka
Menurut Saudara, apa yang
dimaksud dengan kalimat terbuka?
A simple statement
is one that does not contain any other statement as a part. We will use the
lower-case letters, p, q, r, as symbols for simple statements.
In Indonesian, we say it Proposisi.
A
compound statement is one with two or more simple statements as
parts or what we will call components. A component of a compound
is any whole statement that is part of a larger statement; components may
themselves be compounds. In Indonesian, we usually say Komposit or Proposisi
Komposit.
Tugas 1
Buatlah 5
Contoh masing-masing kalimat dibawah ini:
1.
Kalimat pernyataan
2.
Kalimat terbuka
3.
Kalimat perintah
4.
Kalimat tanya
5.
Kalimat harapan
6.
Kalimat faktual.
Kemudian
diskusikan dengan teman anda kalimat yang telah anda buat.
Tugas 2
Tentukanlah kalimat berikut ini
merupakan pernyataan atau bukan, dan jika merupakan kalimat terbuka tentukanlah
variabelnya!
1)
Semarang
terletak di Jawa Tengah.
2)
Terdapat
sebuah bilangan prima yang genap.
3)
5x + 8x = 12x
4)
cos
2x = cos2x – sin2x.
5)
Semua
siswa mengerjakan soal-soal latihan 1.
6)
Mudah-mudahan
semua siswa kelas II naik kelas.
7)
7x
– 8 > 6 + 3x
8)
Mengapa
kamu terlambat datang ke sekolah?
Operator of Statements
- An operator (or connective) joins simple statements into compounds, and joins compounds into larger compounds. We will use the symbols Ù , Ú , Þ , Û and to designate the sentential connectives. They are called sentential connectives because they join sentences (or what we are calling statements). The symbol, ~ , is the only operator that is not a connective; it affects single statements only, and does not join statements into compounds.
- Special for symbol º , we usually called equivalent, is used to explain the similarity of two compounds.
Truth Value and Truth-Functional
- The truth value of a statement is its truth or falsity. All meaningful statements have truth values, whether they are simple or compound, asserted or negated. That is, p is either true or false, ~p is either true or false, p Ú q is either true or false, and so on.
- A compound statement is truth-functional if its truth value as a whole can be figured out solely on the basis of the truth values of its parts or components. A connective is truth- functional if it makes only compounds that are truth-functional. For example, if we knew the truth values of p and of q, then we could figure out the truth value of the compound, p Ú q. Therefore the compound, p Ú q, is a truth-functional compound and disjunction is a truth-functional connective.
- All four of the connectives we are studying (disjunction, conjunction, implication, and equivalence) are truth-functional. Negation is a truth-functional operator. With these four connectives and negation we can express all the truth-functional relations among statements. (Can you imagine how we would prove this?)
Tidak ada komentar:
Posting Komentar